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i. Despite the fact that plastic treatment of metals is ordinarily realized under condi- 
tions of maximum or sufficiently high plasticity, the phenomenon of viscous fracture is often 
observed during forging, pressing, rolling, and other technological processes. Different at- 
tempts at the construction of viscous fracture criteria are known, some of which are based on 
postulation of certain heuristic principles of cumulative damage [i, 2], and others on the 
use of special models of the fracture mechanism [3-5]. This latter approach is most expedient 
since it permits utilization of the results of fine experimental investigations of the micro- 
phenomena during fracture, and at least in principle, thereby allows the possibility of per- 
fecting the physical content of the model. As regards the viscous fracture mechanism of suf- 
ficiently plastic metals, it is then defined by successively developing processes of origina- 
tion, growth, and coalescence of pores at submicro-, micro-, and macrolevels, respectively 
[6]. The mentioned sequence of events, underlying which are phenomena of different scales, 
cannot be described on the basis of a single approach, and statistical averaging of the pre- 
ceding levels is used in going over to ever-increasing levels [7]. 

Averaging of the phenomena of submicroscopic nature that are associated with the processes 
of origination, motion, and interaction of dislocations and vacancies in the grain scale can 
be replaced by an equivalent system of internal microstresses without a detailed analysis of 
the local nature of their distribution [8]. Pore formation is observed at the microlevel 
near the boundaries of grains, twins, solid inclusions, and other defects and irregularities 
of the structure. The pores grow approximately isotropically during further deformation and 
do not interact noticeably. However, after the achievement of a definite pore size, the micro- 
deformation becomes substantially localized, resulting in coalescence and rapid growth of mac- 
rocracks. For viscous fracture under plastic metal treatment, the contribution of the last 
stage to the general history of deformation is not essential, which permits the examination 
to be limited to pore evolution at the microlevel, and the fracture criterion to be formulated 
from the condition of reaching the critical porosity. The usual assumptions about the possibil- 
ity of neglecting elastic deformations as compared with plastic, and discarding taking account 
of the crystallographic orientation of individual grains, yield a further simplification. By 
this means theanalysis of viscous fracture can be reduced to an investigation of the limit 
state of elementary structural cells of a rigidly plastic material with pores. However, at- 
tempts at an analytical solution of the problem mentioned do not result in visible results 
even under quite strong constraints, which force reliance on different approximations at def- 
inite stages of the solution [4-6]. 

A detailed analysis of the state in the neighborhood of individual pores is replaced in 
this paper by a statistical description of the behavior of their ensemble by using the equa- 
tions of the phenomenological theory of plasticity of porous bodies [9] with the main singu- 
larities of the physical model of viscous fracture taken into account. Such an approach re- 
suits in a sequential derivation of the viscous fraction criterion in macroscopic form, and 
in its direct comparison with parameters of the deformation process. 

2. We shall henceforth consider the following volume of material: Aw, volume of an ele- 
mentary structural cell; w, an element of the macrovolume containing a sufficiently large 
number N of cells within which the distribution of macroscopic stresses and strains can be 
assumed homogeneous; and V, volume of the body (Aw << w << V). 

The ensemble of pores N in the volume w is defined by the mean porosity 

N 
~ Am'~i (2.1) 
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where hWni is the volume of the individual pores, and 5w i is the volume of the structural 
cells. The mean porosity (2.1) is taken as the single scalar material damage characteristic 
at the stage of isolated pore growth. The condition of plasticity of the isotropic porous 
body [9] can be used for the volume w: 

where y = y(v), a = a(v) are functions of the material porosity; T, <~>, intensity of the 
tangential stresses and the hydrostatic pressure of the averaged field of effective stress- 
es, <vi~> in the neighborhood of the pores; Os' yield point of the corresponding compact mate- 
rial (v ~ 0). Analogously to [9] the functions y(v), ~(v) are found from the condition of 
the limit state of an elementary structural cell of the material with an equivalent porosi- 
ty v under pure shear (<~> = 0) and hydrostatic loading (T = 0); for y(0) = 3, a(0) = 0, Eq. 
(2.2) agrees with the Mises plasticity condition. 

As was noted above, pore growth is determined by local phenomena and the effective stress 
<oi=> should be calculated by averaging the respective fields over the ensemble of their re- 
alilations in the neighborhood of the pores. Following [8], this latter can be represented 
in the form of a sum of active (macroscopic) and microscopic components. Since the exact 
estimate of the microstress fields is not possible, we then introduce a mean-statistical val- 
ue of the microstresses <olj>, for the macroscopic approach taken, which characterizes a 
definite property of the material under consideration similarly to the yield point ~s ~ Taking 
account of the above, the expression for the effective stresses in the neighborhood of the 
pores in w is written in the form 

<ffij> = ~ij + <ffij>. (2.3) 

Analogously for the strain rates governing the change in pore size and shape in w, we will 
have 

(~ij> = ~ij + <~j> =N~ij (N = i I- <~j>/~ii). (2.4) 

The o.., ~.. in (2.3) and (2.4) are macroscopic, but the <o~.>, <~> are averaged microscop- 
1 13 J * ic stresses and strains, respectively; ~ is a material parameter characterizing the inhomo- 

geneity of the strain state within the elementary structural cells Aw. The case <o~j> = 0 
evidently corresponds to the Reiss approximation, and N = I to the Voight approximaLion [lO], 

Taking (2.2) as the plastic potential and using (2.3) and (2.4), we determine the strain 
rate in w 

(2.5) 

where o, <o'> are the hydrostatic pressures of the macroscopic and microscopic stress compo- 
nent (2.3), respectively, dij is the Kronecker delta. Evaluating the shear strain rate inten- 
sity from (2.5) 

H = ( 2 ~ u ~ u )  v ,  = 2LvT/~ ,  

we have 
= H ~ / 2 ~ r .  

Tbe equations for the strain rate are then written in the form 

' 5 3c~H~ H~ (~j + <~@_ ~ _ <,>) + ,~ ~ (~ + <,>), 

and for the rate of change of volume caused by pore growth 

= 8~j~tj = 9~ (~  + <~ '> )H~/vT .  (2.6) 

Using the relationship [9] 

d8 i do 
= - ~  = 1 - - - ~ - ~ ,  
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we find the kinetic equation of the change in material porosity during its plastic deforma- 
tion from (2.6) 

dv/dt = 9(i --v)uat/n(~ q- <a'>)/gT. ( 2 . 7 )  

S i n c e  v << i f o r  v i s c o u s  f r a c t u r e ,  and  t h e  p o r o s i t y  f u n a t i o n  i s  [9]  

=(v) = e(ln v) -~, 

then to the accuracy of second-order terms, the kinetic equation (2.7) becomes 

(In v) 2 dv = 3 ~ i r ' 3 c r l ~  d- P, ( 2 . 8 )  
v s 

wehre dF = Hdt is the increment in shear strain intensity, and c is the pore shape factor 
that can vary during deformation between the values c = 1/4 for spherical pores and c = 1/3 
for cylindrical pores. 

Integrating (2.8) finally yields 

F 

t 
' ~ + <~'> 
~1 c % dF  = F (v) - -  F(vo) = AF, 

0 

= [(lnv- 
( 2 . 9 )  

In conformity with the above, the limit state (macroscopic fracture in w) will be deter- 
mined by the condition for reaching the critical porosity v*: 

~c + W'>dP  = {v*.[(lnv* - -  1)2 + . i l  - ( 2 . 1 0 )  
0 

--v0[(lnv 0 - -  i) ~ q- l]} = AF*. 

E q u a t i o n  ( 2 . 1 0 )  f o r  t h e  l i m i t i n g  s h e a r  s t r a i n  i n t e n s i t y  F* c o r r e s p o n d s  to  t h e  v i s c o u s  f r a c -  
t u r e  criterion for plastic molding of metals. The quantities vo, v* therein are the initial 
and limit degrees of material d~m~ge by the pores (the relatively slight influence of the 
pore shape can be noted since 0.25-~ c -~ 0.33), n, <a'>, o s characterize definite macroscopic 
properties of the material which depend on its structure, history, and strain conditions in 
the general case; and ~, F are the parameters of the strain process. The absence of macro- 
fracture corresponds to the condition 

P 

" ~ -I- <~'> cr I ~ : d F  = AF <.~ AF*. ( 2 . 1 1 )  
. $ 

0 

Compliance with (2.11) should be verified by integrating its left side along the loading path 
of fixed points of the volume V. Different points of the plastic deformation focus at defi- 
nite times are thereby characterized by a damage Parameter AF, whose critical values domains 
AF* correspond to the macrocrack location and shape. 

3. To integrate (2.10) and (2.11), it is necessary to give the functions 

which are assumed monotonically increasing and constrained. For a macroscopic description 
of the fracture process and because of the complexity of the theoretical buildup of relations 
(3.1), these latter should be determined experimentally. At the present time, the dependence 
of o on different factors has been studied in detail, however, there are only individual 

S 
estimates of the inhomogeneous microstress and microstrain fields in real metals. To clarify 
certain qualitative singularities in their distribution, let us consider a simple model of 
an individual grain containing a pore i, rigid inclusion 2, and blocks a, b, c (Fig. i). As 
noted above, pore formation and growth occur on the grain and the mentioned domain bounda- 
ries (covered in Fig. i by a double hatching). Experimental studies performed by the method 
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of x-ray diffraction [ii] showed that the appropriate domains are among the "strong" (in con- 
trast to the "weak") matrix domains and the microstresses originating therein can significant- 
ly exceed the mean values of the micro- and macrostresses within the grain. The experimenaal- 
ly established fact of an oriented macrostress distribution under plastic deformation, accord- 
ing to which the hydrostatic microstress field component is tensile in "strong" and compres- 
sive in "weak" domains independently of the sign of the applied macrostresses, is important 
(an analogous theoretical result is obtained in [12]). It hence follows that the component 
<o'> should also be tensile. On the other hand, the presence of "strong" domains retarding 
shear propagation corresponds to ~ < i, in conformity with (2.4), where the value of N should 
increase as plastic flow develops when the microelastic strains become small compared to the 
macroscopic strains. Since the influence of the strain history on the instantaneous macro- 
scopic properties is here related directly to the microstresses, the nature of the change in 
the functions ~ and ~ in (3.1) should be analogous. 

The estimates presented permit taking 

as the first approximation in (2.10) and (2.11), and the viscous fracture criterion is written 
in the simplest form 

(3.2) 

which agrees with empirical ultimate plasticity conditions established experimentally in [13, 
14] for metals and porous bodies. 

As follows from (i.7), the pore growth dv/dt > 0 holds for o + <q'> > 0, while dv/dt < 0 
for o + <o'> < 0, and the material porosity diminishes. Hence, the value of the ultimate 
shear strain intensity F*, corresponding to the solution of (2.10) and (3.2), is a function 
of their integrands. To analyze the situations occurring here, we consider the simple load- 
ing case when the effects of a change in the strain and unloading directions do not ho!d~ and 
therefore q/o s = const. Integrating (3.2) then yields 

r * =  ~F~% + <~,>. (3,3) 

, / / / > s ~ 3 ~ x , .  -.x , ~ , ~ Z ~ : ~ .  ~ =: , , , ~ ~  ~r>s.~;z 
"///~/~ II / ' I  i i l  

F 

I 
I i 
I , [ 

if~f6 -0,58 0,58 6/~ s 

Fig. I Fig. 2 
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The solution of (3.3) has meaning for 0 >--<~'>, when the material porosity grows and the 
critical value v* can be achieved. As the tensile hydrostatic pressure diminishes, the limit 
shear strain intensity r* increases and tends to the maximum value (P* § ~) for compressive 
hydrostatic pressures a < -<~'>. The plastic strain is here accompanied by welding of the 
pores and the fracture mechanism under consideration does not hold. The mentioned phenomena 
are well-known experimentally. 

To confirm criterion (3.3) and to estimate certain macroscopic material characteristics, 
experimental plasticity diagrams presented in [3] for different metals and alloys were used. 
The parameters &F~ and <u'>/c s were calculated from (3.3) for experimental values of r*, cor- 
responding to tension and compression tests on cylindrical specimens (O/as = • 0.33). The 
results for St. 45, the titanium alloy VT 1-1, and the aluminum alloy AMg 2 are presented in 
Fig. 2 (curves 1'3, respectively, the solid curves refer to experimental results [3] while 
the dashed curves are constructed from (3.3)). The good agreement with experiment can be seen 
even for the simplified versions of th~ criterion (2.10). The calculated values of the mate- 
rialparameterswere <u'>/~s = 1.08, A~ = 1.2 for steel 45, <~'>/o_ = 1.3, &F~ = 2.5 for the 
alloy VT 1-1, and <~'>/Os = ~.93, AF[ = 2.52 for the alloy AMg 2.~However, it must be noted 
that the parameters c, n, AFt, and vo, v* cannot, in conformity with (3.2) and (2,10), be 
calculated independently of the solution of an equation of type (3.3) and experimental results 
of a different nature should be used to determine them. 
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